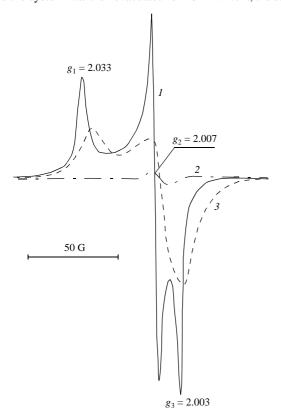
Formation of O_2^- radical anions on the adsorption of NO + O_2 and NO₂ + O_2 mixtures on ZrO₂ according to EPR data

Grigorii A. Konin, Alexander N. Il'ichev,* Valery A. Matyshak and Vladimir N. Korchak

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156

10.1070/MC2000v010n05ABEH001284

The O_2^- radicals are formed at the surface of ZrO_2 by the interaction of adsorbed NO or NO_2 with oxygen at coordinatively unsaturated Zr^{4+} cations.


The formation of O_2^- radicals during the adsorption of $H_2 + O_2$, $H-X+O_2$ and $CH_4 + O_2$ on MgO^{1-4} and $C_3H_6 + O_2$ on Mo/MgO and V/MgO catalysts⁵ has been well investigated. Moreover, the superoxide anion was also observed on the adsorption of $NO + O_2$ on CeO_2 ; however, this effect is little understood.⁶

We found the EPR signal of a complex after the adsorption of $NO + O_2$ and $NO_2 + O_2$ mixtures on thermally activated ZrO_2 . The properties of the complex were investigated, and it was classified as the O_2^- radical adsorbed on the Zr^{4+} cation.

Zirconium dioxide in a tetragonal modification with a specific surface area of 100 m² g⁻¹ was prepared from Zr(NO₃)₄ of analytical grade according to the published procedure.⁷

The EPR and temperature-programmed desorption (TPD) measurements were performed in EPR tubes in a vacuum using 35 mg samples. The test sample was pre-heated at 970 K and 10^{-4} Pa for 1 h. After the thermal treatment, the sample was cooled to room temperature, and a gas was adsorbed at $P = (0.5-10)\times10^2$ Pa for ~3 min. The EPR spectrum was measured at room temperature and 77 K using an ESR-V spectrometer (Institute of Chemical Physics) with a Diapason temperature-controlled attachment. The concentration of radicals was found by the double integration of the EPR spectrum with the use of CuSO₄·5H₂O as a reference sample.⁸

In the TPD experiments, a test gas was adsorbed for 5 min, and the system was then evacuated for 20 min. Next, the sample

Figure 1 EPR spectra of complexes after the adsorption of NO and O_2 on $ZrO_2(I)$ in a vacuum or (2) in NO and (3) in O_2 atmospheres.

was heated at a rate of $12~\rm K~min^{-1}$ under continuous evacuation. The desorption spectrum was recorded on an MX-7303 mass spectrometer.

The adsorption of O_2 , NO or NO_2 on ZrO_2 at room temperature was not accompanied by the appearance of EPR signals. However, an EPR signal was formed after the admission of NO (50 Pa) and then O_2 (2×10² Pa) (Figure 1, curve 1). The spectrum remained unchanged after the gas was pumped out at 293 K, and the corresponding concentration of paramagnetic complexes is 6×10^{18} spin g^{-1} .

The spectrum of the complex almost disappeared in an NO atmosphere $(2\times10^2 \text{ Pa})$ and was broadened in O_2 $(1\times10^3 \text{ Pa})$ (Figure 1, curves 2 and 3, respectively). The spectrum was completely restored by evacuating the gas. These changes resulted from the dipole–dipole interaction between complexes and paramagnetic molecules.

The following *g*-tensor values were found from the spectra recorded at 77 and 293 K: $g_1 = 2.033$, $g_2 = 2.007$ and $g_3 = 2.003$. An EPR signal (Figure 2) with the same parameters ($g_1 = 2.033$, $g_2 = 2.007$ and $g_3 = 2.003$), which corresponds to the O_2^- radical anion, was observed upon the photoadsorption of oxygen under illumination of the oxide with light from a DRSh-1000 mercury lamp at $P = 10^3$ Pa and T = 293 K.

The agreement between the spectra (Figures 1 and 2), the g-values and the published data⁹ suggests that the O_2^- radical anion is formed in the adsorption of NO + O_2 on ZrO₂.

In accordance with the ion model, 9 the charge of a stabilising cation is equal to +4 for $g_1=2.033$. Consequently, the ${\rm O}_2^-$ radical is localised at the ${\rm Zr^{4+}}$ cation.

In the reaction of adsorbed NO_2 with oxygen on the oxide, an analogous O_2^- radical was observed; however, it was more weakly bound to the surface. The radical was detected only in an O_2 atmosphere and disappeared upon evacuating the gas.

We failed to detect \hat{O}_2^- radicals after heating the sample in oxygen at 970 K followed by cooling in O_2 to room temperature or 77 K. However, the signal of O_2^- appeared immediately after the evacuation of oxygen and the admission of NO and then O_2 . In the photoadsorption, the intensity of the O_2^- signal

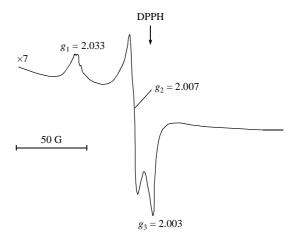
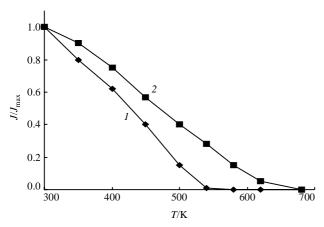
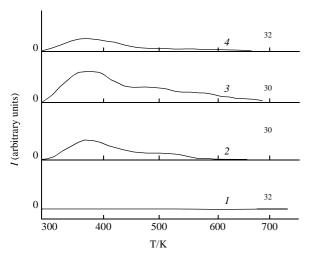



Figure 2 EPR spectrum of the O_2^- radical in a vacuum after the photoadsorption of oxygen.


Figure 3 Intensities of the EPR spectra of O_2^- radical anions as functions of the temperature of heating samples with radicals in a vacuum for 5 min: (1) O_2^- (NO + O_2) and (2) O_2^- (UV + O_2^-).

slowly increased for 1 h and was lower than that after the adsorption of $NO + O_2$ by one order of magnitude. Consequently, the formation of the $O_2^-(NO + O_2)$ radicals on ZrO_2 proceeds more effectively than that of the $O_2^-(UV + O_2)$ radicals.

The amount of O_2^- radicals depends on the gas pressure. At an NO pressure lower than 10 Pa (O_2 , 2×10^2 Pa), the amount of O_2^- radicals decreased. The O_2^- radicals were also formed on the admission of oxygen to the sample with adsorbed NO; however, the amount was 2×10^{18} g⁻¹. In this case, NO was adsorbed at 1×10^2 Pa for 3 min, and the gas was then pumped out for 20 min.

The amount of O_2^- radicals depends on the temperature (T_v) at which the sample was heated in a vacuum. It increased from 2×10^{17} to 6×10^{18} g⁻¹ as the temperature was increased from 500 to 970 K.

The dependence of the ${\rm O}_2^-$ concentration on $T_{\rm v}$ and $P_{\rm NO}$ allows us to conclude that Lewis acid sites are formed during the dehydration of the ZrO $_2$ surface. $^{10-12}$ We estimated the concentration of coordinatively unsaturated Zr $^{4+}$ cations from the EPR spectra of (NO–Zr $^{4+}$) complexes 13 formed on the adsorption of NO (1×10 2 Pa, 77 K) to be 2×10 19 g $^{-1}$. This value is consistent

Figure 4 Spectra of TPD from zirconium dioxide after the adsorption of (I) oxygen and (2) NO and (3, 4) after the formation of O_2^- radicals on the adsorption of NO + O_2 .

with the concentration of O_2^- radicals $6\times 10^{18}~g^{-1}$. Thus, coordinatively unsaturated Zr^{4+} cations can paticipate in the formation of the anion radicals.

Different species were observed during the adsorption of NO and NO₂ on Lewis acid sites of ZrO₂ at room temperature. The NO⁺ species decomposed at T < 650 K, whereas nitrate and nitrite species decomposed at T > 650 K.¹²

Figure 3 shows that the $\rm O_2^-$ concentration decreases with temperature. Radicals were detected only below 550 K. After the treatment at 550 K, the activity of the oxide was fully regenerated. Consequently, the NO+ and O₂- species can be interrelated because the temperature ranges of NO+ and O₂- decomposition and regeneration of the oxide are coincident.

The decomposition of O_2^- radicals results in the desorption of O_2 and NO molecules (Figure 4). The activation energy of O_2 desorption is ~100 kJ mol⁻¹. This value is consistent with the heats of the O_2^- formation on the catalysts (80–100 kJ mol⁻¹). The activation energy was estimated as described in ref. 14.

The coincidence of the spectra (Figures 1 and 2) and the temperature ranges of O_2^- decomposition (Figure 3, curves 1 and 2) allows us to conclude that $O_2^-(NO+O_2)$ and $O_2^-(UV+O_2)$ radicals are adsorbed at similar Zr^{4+} surface sites.

The above data indicate that the superoxide anion is formed during the adsorption of an NO + $\rm O_2$ mixture on thermally activated ZrO_2. The first step is the formation of an NO complex on coordinatively unsaturated Zr^4+ cations or Zr^4+- - -O^ pairs. The second step involves intermolecular electron transfer from the NO complex to an oxygen molecule. The superoxide anion is stabilised at the Zr^4+ cation beside the NO complex. However, the structure of the NO complex is unclear, and we cannot give an adequate explanation of the different stability of $\rm O_2^-$ (NO + $\rm O_2$) and $\rm O_2^-$ (NO_2 + O_2) radicals.

References

- T. Ito, M. Yoshioka and T. Nouda, J. Chem. Soc., Faraday Trans. 1, 1983, 79, 2277.
- 2 G. Garrone, E. Giomello, M. Ferraris and G. Spoto, J. Chem. Soc., Faraday Trans., 1992, 88, 333.
- 3 D. Cordischi, V. Indoviva and M. Occhiuzzi, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 456.
- 4 T. Ito, T. Watanabo, T. Tashiro and K. Toi, J. Chem. Soc., Faraday Trans. 1, 1989, 88, 2381.
- O. V. Krylov, Kinet. Katal., 1973, 14, 35 [Kinet. Catal. (Engl. Transl.), 1973, 14, 251.
- 6 A. Martinez-Arias, J. Soria, J. C. Conesa, X. L. Seoane, A. Arcoya and R. Cataluna, J. Chem. Soc., Faraday Trans., 1995, 91, 1678.
- 7 G. K. Chuah, Catal. Today, 1999, 49, 131.
- 8 A. N. Il'ichev, V. A. Matyshak and V. N. Korchak, Kinet. Katal., 2000, 41, 402 (in Russian).
- 9 M. Che and A. J. Tench, Adv. Catal., 1983, 31, 1.
- 10 K. Hadjivanov, *Catal. Rev. Sci. Eng.*, 2000, **42**, 71.
- 11 Y. Yanagisava, K. Kuramoto and S. Yamabe, J. Phys. Chem. B, 1999, 103, 11078.
- 12 D. V. Poznyakov and V. N. Filimonov, Kinet. Katal., 1973, 14, 760 [Kinet. Catal. (Engl. Transl.), 1973, 14, 655].
- 13 E. V. Lunina, A. K. Selivanovskii, V. B. Golubev, T. Yu. Samgin and G. I. Markaryan, Zh. Fiz. Khim., 1985, 56, 411 (Russ. J. Phys. Chem., 1985, 56, 247).
- 14 M. U. Kislyuk and V. V. Rozanov, Kinet. Katal., 1995, 36, 89 [Kinet. Catal. (Engl. Transl.), 1995, 36, 80].

Received: 15th February 2000; Com. 00/1610